Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra

نویسندگان

  • Paul Terwilliger
  • Chih-wen Weng
چکیده

Let Γ denote a distance-regular graph with diameter D ≥ 3, intersection numbers ai, bi, ci and Bose-Mesner algebra M. For θ ∈ C ∪∞ we define a 1 dimensional subspace of M which we call M(θ). If θ ∈ C then M(θ) consists of those Y in M such that (A−θI)Y ∈ CAD, where A (resp. AD) is the adjacency matrix (resp. Dth distance matrix) of Γ. If θ = ∞ then M(θ) = CAD. By a pseudo primitive idempotent for θ we mean a nonzero element of M(θ). We use these as follows. Let X denote the vertex set of Γ and fix x ∈ X. Let T denote the subalgebra of MatX(C) generated by A, E ∗ 0 , E ∗ 1 , · · · , E ∗ D, where E ∗ i denotes the projection onto the ith subconstituent of Γ with respect to x. T is called the Terwilliger algebra. Let W denote an irreducible T-module. By the endpoint of W we mean min{i|E i W 6= 0}. W is called thin whenever dim(E i W ) ≤ 1 for 0 ≤ i ≤ D. Let V = C X denote the standard T-module. Fix 0 6= v ∈ E 1V with v orthogonal to the all 1’s vector. We define (M; v) := {P ∈ M|Pv ∈ E DV }. We show the following are equivalent: (i) dim(M; v) ≥ 2; (ii) v is contained in a thin irreducible T-module with endpoint 1. Suppose (i), (ii) hold. We show (M; v) has a basis J,E where J has all entries 1 and E is defined as follows. Let W denote the T-module which satisfies (ii). Observe E 1W is an eigenspace for E ∗ 1AE ∗ 1 ; let η denote the corresponding eigenvalue. Define η̃ = −1− b1(1 + η) −1 if η 6= −1 and η̃ = ∞ if η = −1. Then E is a pseudo primitive idempotent for η̃.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Graphs and Their Primitive Idempotents

In this paper, we prove the following two theorems. Theorem 1 Let 0 denote a distance-regular graph with diameter d ≥ 3. Suppose E and F are primitive idempotents of 0, with cosine sequences σ0, σ1, . . . , σd and ρ0, ρ1, . . . , ρd , respectively. Then the following are equivalent. (i) The entry-wise product E ◦ F is a scalar multiple of a primitive idempotent of 0. (ii) There exists a real nu...

متن کامل

Pseudo primitive idempotents and almost 2-homogeneous bipartite distance-regular graphs

Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3 and intersection numbers ci , bi (0 ≤ i ≤ D). By a pseudo cosine sequence of Γ we mean a sequence of scalars σ0, . . . , σD such that σ0 = 1 and ciσi−1 + biσi+1 = kσ1σi for 1 ≤ i ≤ D − 1. By an associated pseudo primitive idempotent we mean a nonzero scalar multiple of the matrix ∑D i=0 σi Ai , where A0, . . . , ...

متن کامل

On Strongly Closed Subgraphs with Diameter Two and Q-Polynomial Property∗ (Preliminary Version 2.0.0)

In this paper, we study a distance-regular graph Γ = (X,R) with an intersection number a2 6= 0 having a strongly closed subgraph Y of diameter 2. Let E0, E1, . . . , ED be the primitive idempotents corresponding to the eigenvalues θ0 > θ1 > · · · > θD of Γ. Let V = C be the vector space consisting of column vectors whose rows are labeled by the vertex set X. Let W be the subspace of V consistin...

متن کامل

Bipartite distance-regular graphs and the Q-polynomial property; the combinatorial meaning of q

These problems are inspired by a careful study of the papers of concerning bipartite distance-regular graphs. Throughout these notes we let Γ = (X, R) denote a bipartite distance-regular graph with diameter D ≥ 3 and standard module V = C X. We fix a vertex x ∈ X and let E denote the corresponding dual primitive idempotents. We define the matrices R = D i=0 E * i+1 AE * i , L= D i=0 E * i−1 AE ...

متن کامل

Distance-regular graphs of q-Racah type and the q-tetrahedron algebra

In this paper we discuss a relationship between the following two algebras: (i) the subconstituent algebra T of a distance-regular graph that has q-Racah type; (ii) the q-tetrahedron algebra ⊠q which is a q-deformation of the three-point sl2 loop algebra. Assuming that every irreducible T -module is thin, we display an algebra homomorphism from ⊠q into T and show that T is generated by the imag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004